QFT II exercises - sheet 9

If you find a mistake in this exercise first check the website if the problem has been resolved already in a newer version. Otherwise, please email rutger.boels@desy.de.

Exercise 1

This exercise is based on section 2.1 of arXiv:hep-th/9702094, lecture notes by Michael Peskin. You probably want to find this¹!

- a By decomposing a Dirac spinor into left and right Weyl spinors (easiest using the chiral representation), show that the massless limit of QCD with only the three flavours u, d and s enjoys a $U(3) \times U(3)$ global symmetry. Hint: the three flavours fill out the fundamental representation of this symmetry: the left and right chiral spinors transform separately.
- b Check that a mass term would spoil the symmetry.
- c Argue that since $U(3) \sim SU(3) \times U(1)$, there are two global U(1) transformations: a chiral ("involving γ_5 ") and a non-chiral one. For complicated reasons, in the following the chiral one can be disregarded.
- d Argue that a vev for a scalar operator

 $\langle \bar{q}_L^f q_R^{f'} \rangle \Delta \delta^{ff'}$

breaks the global symmetry $SU(3) \times SU(3) \times U(1)$ down to $SU(3) \times U(1)$.

- e count the number of 'broken' generators and argue using Goldstone's theorem that there must be 8 massless Goldstone bosons. Verify these fit into the adjoint of the unbroken symmetry.
- f Argue for the correctness of equation 7 in arXiv:hep-th/9702094, in the approximation that the momenta of all particles is very small.
- g Verify that if you take the momentum of a pion to be soft, the corresponding tree level amplitude in this theory vanishes (This is known as an Adler zero).

Exercise 2

Consider ϕ^4 theory,

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi) \partial^{\mu} \phi + \frac{1}{2} \mu^2 \phi^2 - \frac{\lambda}{4!} \phi^4$$

with $\mu > 0$ and $\lambda > 0$. This theory has a spontaneously broken U(1) symmetry.

¹for instance, at http://arxiv.org/abs/hep-th/9702094

- a Introduce new coordinates for the vacuum for which $\langle \phi \rangle = + \sqrt{\frac{6\mu}{\lambda}}$ gives the 'vacuum' vet and derive the Lagrangian
- b Taking inspiration from Peskin and Schroeder, introduce a set of renormalisation conditions.
- c Can all UV divergences be absorbed into field, mass (μ) and coupling constant (λ) redefinitions to the one loop order?