QFT II exercises - sheet 9

If you find a mistake in this exercise first check the website if the problem has been resolved already in a newer version. Otherwise, please email rutger.boels@desy.de.

Exercise 1

This exercise is based on section 2.1 of arXiv:hep-th/9702094, lecture notes by Michael Peskin. You probably want to find this ${ }^{1}$
a By decomposing a Dirac spinor into left and right Weyl spinors (easiest using the chiral representation), show that the massless limit of QCD with only the three flavours u, d and s enjoys a $U(3) \times U(3)$ global symmetry. Hint: the three flavours fill out the fundamental representation of this symmetry: the left and right chiral spinors transform separately.
b Check that a mass term would spoil the symmetry.
c Argue that since $U(3) \sim S U(3) \times U(1)$, there are two global $U(1)$ transformations: a chiral ("involving γ_{5} ") and a non-chiral one. For complicated reasons, in the following the chiral one can be disregarded.
d Argue that a vev for a scalar operator

$$
\left\langle\bar{q}_{L}^{f} q_{R}^{f^{\prime}}\right\rangle \Delta \delta^{f f^{\prime}}
$$

breaks the global symmetry $S U(3) \times S U(3) \times U(1)$ down to $S U(3) \times U(1)$.
e count the number of 'broken' generators and argue using Goldstone's theorem that there must be 8 massless Goldstone bosons. Verify these fit into the adjoint of the unbroken symmetry.
f Argue for the correctness of equation 7 in arXiv:hep-th/9702094, in the approximation that the momenta of all particles is very small.
g Verify that if you take the momentum of a pion to be soft, the corresponding tree level amplitude in this theory vanishes (This is known as an Adler zero).

Exercise 2

Consider ϕ^{4} theory,

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right) \partial^{\mu} \phi+\frac{1}{2} \mu^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}
$$

with $\mu>0$ and $\lambda>0$. This theory has a spontaneously broken $U(1)$ symmetry.

[^0]a Introduce new coordinates for the vacuum for which $\langle\phi\rangle=+\sqrt{\frac{6 \mu}{\lambda}}$ gives the 'vacuum' vet and derive the Lagrangian
b Taking inspiration from Peskin and Schroeder, introduce a set of renormalisation conditions.
c Can all UV divergences be absorbed into field, mass (μ) and coupling constant (λ) redefinitions to the one loop order?

[^0]: ${ }^{1}$ for instance, at http://arxiv.org/abs/hep-th/9702094

